Fisher Information Explained: Python and Visual Illustrations

Definition of Fisher Information The Fisher information is defined as $$\mathrm{FisherInformation}(\theta_0)\stackrel{\text{def}}{=}-\mathbb{E}_{X\sim p(x\mid\theta_0)}\left[\frac{d^2}{d\theta^2}\log p(x\mid\theta)\bigg|_{\theta=\theta_0}\right].$$ Fisher information quantifies how precisely a model parameter can be estimated.A larger Fisher information means the parameter can be estimated more accurately,while a smaller Fisher information indicates that estimation is more difficult. Fisher information admits several equivalent interpretations. Equivalent Expressions $$\begin{align}&\mathrm{FisherInformation}(\theta_0) \\&\stackrel{\text{def}}{=}-\mathbb{E}_{X […]

Fisher Information Explained: Python and Visual Illustrations Read Post »